Loss Minimization and Parameter Estimation with Heavy Tails

نویسندگان

  • Daniel J. Hsu
  • Sivan Sabato
چکیده

This work studies applications and generalizations of a simple estimation technique that provides exponential concentration under heavy-tailed distributions, assuming only bounded low-order moments. We show that the technique can be used for approximate minimization of smooth and strongly convex losses, and specifically for least squares linear regression. For instance, our d-dimensional estimator requires just Õ(d log(1/δ)) random samples to obtain a constant factor approximation to the optimal least squares loss with probability 1− δ, without requiring the covariates or noise to be bounded or subgaussian. We provide further applications to sparse linear regression and low-rank covarinace matrix estimation with similar allowances on the noise and covariate distributions. The core technique is a generalization of the median-of-means estimator to arbitrary metric spaces. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation for Exponentially Tempered Power Law Distributions

Tail estimates are developed for power law probability distributions with exponential tempering, using a conditional maximum likelihood approach based on the upper order statistics. Tempered power law distributions are intermediate between heavy power-law tails and Laplace or exponential tails, and are sometimes called “semiheavy” tailed distributions. The estimation method is demonstrated on s...

متن کامل

L-moments and TL-moments of the generalized lambda distribution

The 4-parameter generalized lambda distribution (GLD) is a flexible distribution capable of mimicking the shapes of many distributions and data samples including those with heavy tails. The method of L-moments and the recently developed method of trimmed L-moments (TL-moments) are attractive techniques for parameter estimation for heavy-tailed distributions for which the Land TL-moments have be...

متن کامل

High Quantile Estimation and the Port Methodology

• In many areas of application, a typical requirement is to estimate a high quantile χ1−p of probability 1−p, a value, high enough, so that the chance of an exceedance of that value is equal to p, small. The semi-parametric estimation of high quantiles depends not only on the estimation of the tail index γ, the primary parameter of extreme events, but also on an adequate estimation of a scale f...

متن کامل

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

Estimation of Scale Parameter Under a Bounded Loss Function

     The quadratic loss function has been used by decision-theoretic statisticians and economists for many years.  In this paper  the estimation of scale parameter under a bounded loss function, which is adequate for assessing quality and quality improvement, is considered with restriction to the principles of invariance and risk unbiasedness. An implicit form of minimum risk scale equivariant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016